

Lecture 1

Recursive Robot Dynamics

Prof. S.K. Saha ME Dept., IIT Delhi

What is recursive? k Dynamic equations #n: inertia force #n n: torque #*n*: vel., accn. Kinematic relations n #i i: torque #1:inertia force #1 #1: vel., accn. 1: torque 1: rate, accn #0 #0: vel., accn. = 0

Why recursive?

 Efficient, i.e., less computations and CPU time Compute jt. torque Compute jt. accn. (Inverse) (Forward)

Ref. : Shah, S., V. Saha, S.K., Dutt, J.K, Dynamics of Tree-type Robotic Systems, Springer, 2013

Why recursive? (contd.)

 Numerically stable → Simulation is <u>realistic</u> Recursive Non-recursive (Forward) (Forward)

Ref. : Mohan, A., and **Saha, S.K**., <u>A recursive, numerically stable, and efficient simulation</u> algorithm for serial robots with flexible links, Multibody System Dyn., V. 21, N. 1, pp. 1–35.

Unrealistic: Constraint Violation

Review of Dynamic Formulations

Euler-Lagrange (EL) ۲

 $d \left(\partial L \right) \quad \partial L = -\tau$

Newton-Euler (NE) ۲

$$\overline{dt} \left(\overline{\partial \dot{q}_i} \right)^{-} \overline{\partial q_i}^{-} \iota_i$$

$$\overline{m_i} \dot{\mathbf{v}}_i = \mathbf{f}_i$$

$$\mathbf{I}_i \dot{\boldsymbol{\omega}}_i + \boldsymbol{\omega}_i \times \mathbf{I}_i \boldsymbol{\omega}_i = \mathbf{n}_i$$

$$\mathbf{M}_i \dot{\mathbf{t}}_i + \mathbf{W}_i \mathbf{M}_i \mathbf{t}_i = \mathbf{w}_i$$

$$\mathbf{M}_{i} \equiv \begin{bmatrix} \mathbf{I}_{i} & \mathbf{O} \\ \mathbf{O} & m_{i} \mathbf{1} \end{bmatrix}, \mathbf{W}_{i} \equiv \begin{bmatrix} \boldsymbol{\omega}_{i} \times \mathbf{1} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix}, \mathbf{t}_{i} \equiv \begin{bmatrix} \boldsymbol{\omega}_{i} \\ \mathbf{v}_{i} \end{bmatrix}, \mathbf{w}_{i} \equiv \begin{bmatrix} \mathbf{n}_{i} \\ \mathbf{f}_{i} \end{bmatrix}$$

Starting point for the Recursive Dynamics (using the DeNOC matrices)

Newton-Euler to Euler-Lagrange

• Eliminate constraint forces and moments from the NE equations.

Analytical expressions of vector and matrices,
 Decomposition of inertia Matrix, Recursive algorithms,
 Dynamics model simplifications, etc.

Example: A Moving Mass

 f_v : Vertical component \rightarrow Reaction f: Horizontal component \rightarrow Motion

Equation of Motion

Newton's 2nd law:
$$\mathbf{f}_e + \mathbf{f}_c = m\mathbf{\ddot{c}}$$

Velocity constraint: $\mathbf{\dot{c}} = [\mathbf{i}]\mathbf{\dot{x}}$
NOC: $[\mathbf{i}]$
Euler-Lagrange:
Note that
 $[\mathbf{i}]^T (f_v + f_c)[\mathbf{j}] = 0$

 $[\mathbf{i}]^T [f\mathbf{i} + (f_v + f_c)\mathbf{j}] = [\mathbf{i}]^T m \ddot{\mathbf{x}} \mathbf{i} \Longrightarrow f = m \ddot{\mathbf{x}}$

Uncoupled NE Equations

• Newton-Euler (NE) equations fo

 $\mathbf{I}_i \dot{\mathbf{\omega}}_i + \mathbf{\omega}_i \times \mathbf{I}_i \mathbf{\omega}_i = \mathbf{n}_i$ $m_i \dot{\mathbf{v}}_i = \mathbf{f}_i$

• NE equations in compact form $\mathbf{M}_i \dot{\mathbf{t}}_i + \mathbf{W}_i \mathbf{M}_i \mathbf{t}_i = \mathbf{w}_i$

where

$$\mathbf{M}_{i} \equiv \begin{bmatrix} \mathbf{I}_{i} & \mathbf{O} \\ \mathbf{O} & m_{i} \mathbf{1} \end{bmatrix}, \mathbf{t}_{i} \equiv \begin{bmatrix} \boldsymbol{\omega}_{i} \\ \dot{\mathbf{v}}_{i} \end{bmatrix}, \mathbf{W}_{i} \equiv \begin{bmatrix} \boldsymbol{\omega}_{i} \times \mathbf{1} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix}, \mathbf{w}_{i} \equiv \begin{bmatrix} \mathbf{n}_{i} \\ \mathbf{f}_{i} \end{bmatrix}$$

Uncoupled NE Equations

• Separate the bodies $\rightarrow n$ bodies

Kinematic (Velocity) Constraints

 \mathbf{B}_{ii} : the $6n \times 6n$ twist-propagation matrix

 \mathbf{p}_i : the 6*n*-dimensional joint-rate propagation vector or <u>twist generator</u>

DeNOC Matrices

• $N \equiv N_l N_d$: the $6n \times n$ Decoupled Natural Orthogonal Complement

Coupled Equations of Motion

• Pre-multiplication by \mathbf{N}^{T}

$$\mathbf{N}^{T}(\mathbf{M}\dot{\mathbf{t}} + \mathbf{W}\mathbf{M}\mathbf{t}) = \mathbf{N}^{T}(\mathbf{w}^{E} + \mathbf{w}^{C})$$

• Equations in compact form $\therefore \mathbf{N}^T \mathbf{w}^C = \mathbf{0} \quad \mathbf{I} \ddot{\mathbf{\theta}} + \mathbf{C} \dot{\mathbf{\theta}} = \mathbf{\tau} \checkmark n \operatorname{Coup}_{-n(\mathbf{0})}$

n coupled EL equations - *no partial differentiation*

- I : *n*×*n* Generalized inertia matrix (GIM)
- **C** : $n \times n$ Matrix of convective inertia (MCI) terms
- τ dimensional vector of generalized forces due to driving torques/forces, and those resulting from the gravity, environment and dissipation.

Generalized Inertia Matrix (GIM)

• Generalized inertia matrix (GIM)

$$\mathbf{I} = \mathbf{N}_d^T \widetilde{\mathbf{M}} \mathbf{N}_d$$
 where $\widetilde{\mathbf{M}} \equiv \mathbf{N}_l^T \mathbf{M} \mathbf{N}_l$

- Each element of the GIM $i_{ij} = \mathbf{p}_i^T \tilde{\mathbf{M}}_i \mathbf{B}_{ij} \mathbf{p}_j$
- Mass matrix of composite body

$$\tilde{\mathbf{M}}_{i} = \mathbf{M}_{i} + \mathbf{B}_{i+1,i}^{T} \tilde{\mathbf{M}}_{i+1} \mathbf{B}_{i+1,i}$$

Vector of Convective Inertia (VCI)

• Vector of Convective Inertia $\mathbf{h} \equiv \mathbf{C}\dot{\boldsymbol{\theta}} = \mathbf{N}_d^T \widetilde{\mathbf{w}}'$

where $\tilde{\mathbf{w}}' = \mathbf{N}_d^T (\mathbf{Mt'} + \mathbf{WMt})$ and $\mathbf{t'} = (\dot{\mathbf{N}}_l + \mathbf{N}_l \mathbf{W})\dot{\mathbf{\theta}}$

• Each element of **h**

$$\mathbf{h}_{i} = \mathbf{p}_{i}^{T} \tilde{\mathbf{w}}_{i}'$$
where $\tilde{\mathbf{w}}_{i}' = \mathbf{w}_{i}' + \mathbf{B}_{i+1,i}^{T} \tilde{\mathbf{w}}_{i+1}'$, and $\tilde{\mathbf{w}}_{n}' = \mathbf{w}_{n}'$
and $\mathbf{w}_{i}' \equiv \mathbf{M}_{i} \mathbf{t}_{i}' + \mathbf{W}_{i} \mathbf{M}_{i} \mathbf{t}_{i}$

Generalized Force (Joint Torque)

• Generalized Force

$$\boldsymbol{\tau} = \mathbf{N}_d^T \tilde{\mathbf{w}}^E$$
 where $\widetilde{\mathbf{w}}^E = \mathbf{N}_l^T \mathbf{w}^E$

• Each element is obtained recursively

$$\tau_i = \mathbf{p}_i^T \tilde{\mathbf{w}}_i^E,$$

where $\tilde{\mathbf{w}}_i^E = \mathbf{w}_i^E + \mathbf{B}_{i+1,i}^T \tilde{\mathbf{w}}_{i+1}^E,$ and $\tilde{\mathbf{w}}_n^E = \mathbf{w}_n^E$

Example: One-link arm

$$[\mathbf{e}]_{1} \equiv [0 \quad 0 \quad 1]^{T}; [\mathbf{d}]_{1} \equiv [\frac{1}{2} ac\theta \quad \frac{1}{2} as\theta \quad 0]^{T}$$
$$[\mathbf{I}]_{2} = \frac{ma^{2}}{12} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{Q} = \begin{bmatrix} c\theta & -s\theta & 0 \\ s\theta & c\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$[\mathbf{I}]_{I} = \mathbf{Q}[\mathbf{I}]_{2} \mathbf{Q}^{T} = \frac{ma^{2}}{12} \begin{bmatrix} s^{2}\theta & -s\theta c\theta & 0 \\ -s\theta c\theta & c^{2}\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
where $\mathbf{p} \equiv \begin{bmatrix} \mathbf{e} \\ \mathbf{e} \times \mathbf{d} \end{bmatrix}$ and $\tilde{\mathbf{M}} \equiv \mathbf{M} = \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{O} & m\mathbf{I} \end{bmatrix}$
$$I(\equiv i_{11}) = \mathbf{p}^{T} \tilde{\mathbf{M}} \mathbf{p}$$
$$= \mathbf{e}^{T} \mathbf{I} \mathbf{e} + m(\mathbf{e} \times \mathbf{d})^{T} (\mathbf{e} \times \mathbf{d}) = \frac{1}{3} ma^{2}$$

;

Fig. 9.3 One-link arm

Ref: "Introduction to Robotics" by Saha

Moment of inertia about O

$$h = \mathbf{p}^{T} (\mathbf{MW} + \mathbf{WM})\mathbf{p}$$
$$= \dot{\theta} \mathbf{e}^{T} [\mathbf{I}(\mathbf{e} \times \mathbf{e}) + (\mathbf{e} \times \mathbf{Ie})] = 0$$
$$\tau_{1} = \mathbf{N}_{l}^{T} \mathbf{w}^{E} = [\mathbf{e}^{T} \quad (\mathbf{e} \times \mathbf{d})^{T}] \begin{bmatrix} \mathbf{n} \\ \mathbf{f} \end{bmatrix} \implies \tau_{1} = \tau - \frac{1}{2} mgas\theta$$
where $[\mathbf{n}]_{1} \equiv [0 \quad 0 \quad \tau]^{T}; [\mathbf{f}]_{1} = [mg \quad 0 \quad 0]^{T}$

Equation of motion:

$$\frac{1}{3}ma^2\ddot{\theta} = \tau - \frac{1}{2}mgas\theta$$

Recursive Inverse Dynamics

$$\begin{aligned} \mathbf{\gamma}_{n} &= \mathbf{M}_{n} \mathbf{\beta}_{n} + \mathbf{W}_{n} \mathbf{M}_{n} \mathbf{\alpha}_{n} \\ \mathbf{\gamma}_{n-1} &= \mathbf{M}_{n-1} \mathbf{\beta}_{n-1} + \mathbf{W}_{n-1} \mathbf{M}_{n-1} \mathbf{\alpha}_{n-1} + \mathbf{B}_{n,n-1}^{T} \mathbf{\gamma}_{n} \\ \vdots \\ \mathbf{\gamma}_{1} &= \mathbf{M}_{1} \mathbf{\beta}_{1} + \mathbf{W}_{1} \mathbf{M}_{1} \mathbf{\alpha}_{1} + \mathbf{B}_{21}^{T} \mathbf{\gamma}_{2} \end{aligned}$$

$$\begin{aligned} \mathbf{\tau}_{n} &= \mathbf{p}_{n-1}^{T} \mathbf{\gamma}_{n} \\ \mathbf{\tau}_{n-1} &= \mathbf{p}_{n-1}^{T} \mathbf{\gamma}_{n-1} \\ \vdots \\ \mathbf{\tau}_{1} &= \mathbf{p}_{1}^{T} \mathbf{\gamma}_{1} \end{aligned}$$

$$\begin{aligned} \mathbf{\beta}_{1} &= \mathbf{p}_{1} \dot{\mathbf{\beta}}_{1} + \mathbf{\Omega}_{1} \mathbf{p}_{1} \dot{\mathbf{\beta}}_{1} \\ \mathbf{\beta}_{2} &= \mathbf{p}_{2} \dot{\mathbf{\beta}}_{2} + \mathbf{\Omega}_{2} \mathbf{p}_{2} \dot{\mathbf{\beta}}_{2} \\ &+ \mathbf{B}_{21} \mathbf{\beta}_{1} + \mathbf{B}_{21} \mathbf{\alpha}_{1} \\ \vdots \\ \mathbf{\beta}_{n} &= \mathbf{p}_{n} \ddot{\mathbf{\beta}}_{n} + \mathbf{\Omega}_{n} \mathbf{p}_{n} \dot{\mathbf{\beta}}_{n} \\ &+ \mathbf{B}_{n,n-1} \mathbf{\beta}_{n-1} + \dot{\mathbf{B}}_{n,n-1} \mathbf{\alpha}_{n-1} \end{aligned}$$

Lecture 2

Recursive Robot Dynamics

Prof. S.K. Saha ME Dept., IIT Delhi

Summary of Previous Lecture

- Why recursive?
- Define DeNOC (Decoupled Natural Orthogonal Complement) matrices from velocity constraints
- Derived NE → EL equations (Constrained minimum set)
- Analytical expressions for the GIM, and other matrices

One-link Arm

Equation of motion (Dynamic Model)

$$\frac{1}{3}ma^2\ddot{\theta} = \tau - \frac{1}{2}mgas\theta$$

Fig. 9.3 One-link arm

RoboAnalyzer (Free: www.roboanalyzer.com)

Verify the results using MATLAB's symbolic tool (<u>MuPAD</u>)

$$I(\equiv i_{11}) = \mathbf{p}^T \tilde{\mathbf{M}} \mathbf{p} = \mathbf{e}^T \mathbf{I} \mathbf{e} + m(\mathbf{e} \times \mathbf{d})^T (\mathbf{e} \times \mathbf{d}) = \frac{1}{3}ma^2$$

$$h = \mathbf{p}^T (\mathbf{MW} + \mathbf{WM})\mathbf{p} = \dot{\mathbf{\theta}}\mathbf{e}^T [\mathbf{I}(\mathbf{e} \times \mathbf{e}) + (\mathbf{e} \times \mathbf{Ie})] = 0$$

$$\tau_1 = \mathbf{N}_l^T \mathbf{w}^E = [\mathbf{e}^T \quad (\mathbf{e} \times \mathbf{d})^T] \begin{bmatrix} \mathbf{n} \\ \mathbf{f} \end{bmatrix} \implies \tau_1 = \tau - \frac{1}{2} mgas\theta$$

where $[\mathbf{n}]_1 \equiv [0 \quad 0 \quad \tau]^T; [\mathbf{f}]_1 = [mg \quad 0 \quad 0]^T$

Equation of motion:

$$\frac{1}{3}ma^2\ddot{\theta} = \tau - \frac{1}{2}mgas\theta$$

Example: Two-link Manipulator

T7

;

$$\mathbf{I} = \begin{bmatrix} i_{11} & i_{12}(=i_{21}) \\ i_{21} & i_{22} \end{bmatrix}; \mathbf{h} = \mathbf{C}\dot{\boldsymbol{\theta}} = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}; \boldsymbol{\tau} = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix}$$

$$i_{22} \equiv \mathbf{p}_2^T \tilde{\mathbf{M}}_2 \mathbf{B}_{22} \mathbf{p}_2 : \text{Scalar}$$

$$\mathbf{p}_2 \equiv \begin{bmatrix} \mathbf{e}_2 \\ \mathbf{e}_2 \times \mathbf{d}_2 \end{bmatrix}: \text{6-dim. vector}$$

$$\tilde{\mathbf{M}}_2 \equiv \mathbf{M}_2 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{O} \\ \mathbf{O} & m_2 \mathbf{1} \end{bmatrix}: \text{6} \times \text{6 sym. matrix}$$

$$\mathbf{B}_{22} \equiv \begin{bmatrix} \mathbf{1} & \mathbf{O} \\ \mathbf{O} & \mathbf{1} \end{bmatrix}: \text{6} \times \text{6 identity matrix}$$

$$i_{22} = [\mathbf{e}_2]_2^T [\mathbf{I}_2]_2 [\mathbf{e}_2]_2 + m_2 [\mathbf{d}_2]_2^T [\mathbf{d}_2]_2$$

$$i_{22} = [\mathbf{e}_{2}]_{2}^{T} [\mathbf{I}_{2}]_{2} [\mathbf{e}_{2}]_{2} + m_{2} [\mathbf{d}_{2}]_{2}^{T} [\mathbf{d}_{2}]_{2}$$

$$[\mathbf{e}_{2}]_{2} \equiv [0 \quad 0 \quad 1]^{T}; \ [\mathbf{d}_{2}]_{2} \equiv [\frac{1}{2}a_{2}c\theta_{2} \quad \frac{1}{2}a_{2}s\theta_{2} \quad 0]^{T} \qquad X_{3}$$

$$\mathbf{Q}_{2} = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0\\ s\theta_{2} & c\theta_{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{H}_{2}]_{2} = \mathbf{Q}_{2}[\mathbf{I}_{2}]_{3}\mathbf{Q}_{2}^{T} = \frac{ma^{2}}{12} \begin{bmatrix} s^{2}\theta_{2} & -s\theta_{2}c\theta_{2} & 0\\ -s\theta_{2}c\theta_{2} & c^{2}\theta_{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{H}_{2}]_{2} = \mathbf{Q}_{2}[\mathbf{I}_{2}]_{3}\mathbf{Q}_{2}^{T} = \frac{ma^{2}}{12} \begin{bmatrix} s^{2}\theta_{2} & -s\theta_{2}c\theta_{2} & 0\\ -s\theta_{2}c\theta_{2} & c^{2}\theta_{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{H}_{2}]_{2} = \frac{1}{12}m_{2}a_{2}^{2} + \frac{1}{4}m_{2}a_{2}^{2} = \frac{1}{3}m_{2}a_{2}^{2}$$

$$i_{21}(=i_{12}) \equiv \mathbf{p}_{2}^{T} \tilde{\mathbf{M}}_{2} \mathbf{B}_{21} \mathbf{p}_{1} : \text{Scalar}$$

$$\mathbf{B}_{21} \equiv \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ -(\mathbf{r}_{1} + \mathbf{d}_{2}) \times \mathbf{1} & \mathbf{1} \end{bmatrix} : 6 \times 6 \text{ matrix}$$

$$\mathbf{p}_{1} \equiv \begin{bmatrix} \mathbf{e}_{1} \\ \mathbf{e}_{1} \times \mathbf{d}_{1} \end{bmatrix} : 6 \text{-dim. vector}$$

$$\mathbf{Q}_{1} = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 \\ s\theta_{1} & c\theta_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$i_{21} = [\mathbf{e}_{2}]_{1}^{T} [\mathbf{I}_{2}]_{1} [\mathbf{e}_{1}]_{1} + m_{2} [\mathbf{d}_{2}]_{1}^{T} ([\mathbf{d}_{1} + \mathbf{r}_{1}]_{1} + [\mathbf{d}_{2}]_{1})$$

$$[\mathbf{e}_{2}]_{1} \equiv \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}; \ [\mathbf{d}_{2}]_{1} = \mathbf{Q}_{1} [\mathbf{d}_{2}]_{2} = [\frac{1}{2}a_{2}c\theta_{12} & \frac{1}{2}a_{2}s\theta_{12} & 0]^{T}$$

$$[\mathbf{e}_{1}]_{1} \equiv [0 & 0 & 1]^{T}; \ [\mathbf{d}_{1}]_{1} = [\mathbf{r}_{1}]_{1} = [\frac{1}{2}a_{1}c\theta_{1} & \frac{1}{2}a_{2}s\theta_{1} & 0]^{T}$$

$$i_{21} = \frac{1}{12}m_{2}a_{2}^{2} + \frac{1}{2}m_{2}a_{1}a_{2}c\theta_{2} + \frac{1}{4}m_{2}a_{2}^{2} = \frac{1}{3}m_{2}a_{2}^{2} + \frac{1}{2}m_{2}a_{1}a_{2}c\theta_{2}$$

;

$$i_{11} \equiv \mathbf{p}_{1}^{T} \widetilde{\mathbf{M}}_{1} \mathbf{B}_{11} \mathbf{p}_{1} : \text{Scalar}$$

$$\mathbf{B}_{11} \equiv \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} : 6 \times 6 \text{ identity matrix}$$

$$\mathbf{M}_{1} \equiv \begin{bmatrix} \mathbf{I}_{1} & \mathbf{0} \\ \mathbf{0} & m_{1} \mathbf{1} \end{bmatrix} : 6 \times 6 \text{ sym. matrix}$$

$$\widetilde{\mathbf{M}}_{1} = \mathbf{M}_{1} + \mathbf{B}_{21}^{T} \widetilde{\mathbf{M}}_{2} \mathbf{B}_{21} = \begin{bmatrix} \widetilde{\mathbf{I}}_{1} & \delta_{1} \times \mathbf{1} \\ -\delta_{1} \times \mathbf{1} & \widetilde{m}_{1} \mathbf{1} \end{bmatrix}$$

$$\widetilde{\mathbf{I}}_{1} = \mathbf{I}_{1} + \mathbf{I}_{2} + m_{2} (\mathbf{r}_{1} + \mathbf{d}_{2}) \times (\widetilde{\delta}_{1} \times \mathbf{1})$$

$$\widetilde{\mathbf{\delta}}_{1} = m_{2} \mathbf{c}_{21}$$

$$\widetilde{\mathbf{m}}_{1} = m_{1} + m_{2}$$

$$i_{11} = [\mathbf{e}_{1}]_{1}^{T} [\widetilde{\mathbf{I}}_{1}]_{1} [\mathbf{e}_{1}]_{1} + \widetilde{m}_{1} [\mathbf{d}_{1}]_{1}^{T} [\mathbf{d}_{1}]_{1}$$

$$= \frac{1}{3} (m_{1}a_{1}^{2} + m_{2}a_{2}^{2}) + m_{2}a_{1}^{2} + m_{2}a_{1}a_{2}c\theta_{2}$$

Vector of Convective Inertia

$$h_{2} = \mathbf{p}_{2}^{T} \tilde{\mathbf{w}}_{2}' = \frac{1}{2} m_{2} a_{1} a_{2} s \theta_{2} \dot{\theta}_{1}^{2} \qquad h_{1} = \mathbf{p}_{1}^{T} \tilde{\mathbf{w}}_{1}' = -m_{2} a_{1} a_{2} s \theta_{2} \dot{\theta}_{2} (\frac{1}{2} \dot{\theta}_{2} + \dot{\theta}_{1})$$

Inverse Dynamics Results

Link	Joint	<i>a_i</i> (m)	<i>b_i</i> (m)		$\begin{array}{c c} \alpha_i & \theta_i \\ \text{rad} & (\text{rad}) \end{array}$		sing	Pop		
1	r	0.3	0) JV		[0]		20	Anaho
2	r	0.25	0) JV [0]		[0]			- Cel
Link	m_i	$r_{i,x}$	r _{i,y}	r _{i,z}	$I_{i,xx}$	$I_{i,xy}$	$I_{i,xz}$	I _{i,yy}	I _{i,yz}	I _{i,zz}
	(kg)	((kg-m ²)						
1	0.5	0.15	0	0	0	0	0	0.00375	0	0.00375
2	0.4	0.125	0	0	0	0	0	0.00208	0	0.00208

OH and Inertia parameters

Joint Torques

Forward Dynamics & Simulation

Equation of motion for one-link arm

$$\frac{1}{3}ma^2\ddot{\theta} = \tau - \frac{1}{2}mgas\theta$$

Forward Dynamics: $\ddot{\theta} = \frac{3}{ma^2} (\tau - \frac{1}{2}mgas\theta)$ +Integration (numerical): $\dot{y}_1 = \theta; y_2 = \dot{\theta}$ $\dot{y}_1 = y_2$ $\dot{y}_2 = \ddot{\theta} = \frac{3}{ma^2} (\tau - \frac{1}{2}mga\sin y_1)$

Integrate (say, numerically) to obtain **y**(t) using, e.g., Runge-Kutta method (ode45 of MATLAB)

Simulation using RA

			RoboAna	lyzer		J English	- 8 0	9	0	-	2		
🖳 Virtual Robot S	Simulator Developed	l at IIT Delhi Rob	ot Name: ABB I	IRB 120	Payload:	_ = _ ×						Browser	Д
Select: ABBIRB120	D 🔻 Load											O+ O= Ch Wh Ch = Ch O	
Joint 1													U
									Analyses				
-165	165							-			14	Time Duration No of Step	os
Joint 2								a hiz		-	1.	1 100	
	74 🐥						120		*	-		FKin 📔 IDyn	H
-20	200								1	X		IKin 🗐 FDyn	
Joint 3				1	1				p				
	-6			1		~	1		>				
-70	90					SAL.					A	inks inks	*
Joint 4	0					11	÷				Jr.	tink2	
	-78											i⊞- Link3 i⊞- Link4	=
-340	-20										1	Enk5	
Joint 5	100		0	\checkmark							1	Link 6	
	200			1							/		
ou	300				<u>, see</u>								
Joint 6	0			\sim						/			
-400	400												
	400							15.1.1	T : 4 A - L	1. 11. 137.1	5-1VI-		ą
End-effector Iran	stormation	-		-			heta) deg	(a) mm	(alpha) deg	(JV) deg or mm	(JV) deg or mm	Salad birt Speed	jectory
Autodesk FLV P	layer Microsoft	VAIO Manual	6 🔻	1	Revolute	400	Variable	180	90	0	60		
Inventor P	OfficeCOD		Select Robot	2	Revolute	135	Variable	600	180	0	60	Slow Fa	ist
ALC: A	-	5		3	Revolute	135	Variable	120	-90	0	60	Joint Offset Joint Angle Link Length Twist	: Angle _
			ОК	4	Revolute	020	Variable	0	.90	0	60	Base Frame to End-Effector	
Autodesk HP Sol	lution Mozilla	VALO	More Bobots	6	Revolute	115	Variable	0	0	0	60		
Vault 2012 Cen	iter Firefox	Transi	100010			Not and	percentation of the				17750 -		
					<u>e</u>								20:29
													25-08-2012

Recursive Forward Dynamics

Equation of the motion

$$\overrightarrow{\mathbf{I}\ddot{\boldsymbol{\theta}} + \mathbf{C}\dot{\boldsymbol{\theta}} = \boldsymbol{\tau}} \quad \mathbf{U}\mathbf{D}\mathbf{U}^T\ddot{\boldsymbol{\theta}} = \boldsymbol{\varphi}, \text{ where } \mathbf{I} = \underbrace{\mathbf{U}\mathbf{D}\mathbf{U}^T}_{Analytically} \text{ and } \boldsymbol{\varphi} = \boldsymbol{\tau} - \mathbf{C}\dot{\boldsymbol{\theta}}$$

The joint accelerations are then solved as

$$\ddot{\boldsymbol{\theta}} = \mathbf{U}^{-T}\mathbf{D}^{-1}\mathbf{U}^{-1}\boldsymbol{\phi}$$

Hence forward dynamics requires three steps

Step 1: Computation of $\boldsymbol{\varphi}$

Step 2: UDU^{T} Decomposition

Step 3: Recursive computation of $\ddot{\mathbf{ heta}}$

Observations

- Derivations appear to be complex for the simpler manipulators
- It was for demonstration only
- The computations will be done algorithmically
- Due to recursive natures, calculations are fast
- The algorithm should be used for complex robotic systems like 6- or more-DOF robots

Intelligent Systems, Control and Automation: Science and Engineering

Suril Vijaykumar Shah Subir Kumar Saha Jayanta Kumar Dutt

Dynamics of Tree-Type Robotic Systems

Springer

Lecture 3

Recursive Robot Dynamics

Prof. S.K. Saha ME Dept., IIT Delhi
Summary of Previous Lecture

- Use of RoboAnalyzer (RA) for inverse dynamics of one-link arm
- GIM for 2-link manipulator
- Inverse dynamics of KUKA robot
- Forward dynamics and simulation
- Use of RA for simulation
- Some observations for using recursive dynamics

Parallel Manipulators

Stewart Platform

Four-bar Mechanism

$$\begin{bmatrix} 1 & d_{1y} & -d_{1x} & r_{1y} & -r_{1x} \\ 1 & & -1 & & \\ 0's & & \begin{vmatrix} t_{1} & t_{1} \\ t_{2y} & -t_{2x} & r_{2y} & -r_{2x} \\ t_{1} & t_{1} & t_{1} \\ 0's & & \begin{vmatrix} t_{2y} & -d_{2x} & r_{2y} & -r_{2x} \\ t_{1} & t_{1} & t_{1} \\ t_{2y} & -t_{2x} & t_{2y} & -r_{2x} \\ t_{1} & t_{1} & t_{1} \\ t_{2y} & t_{2y} \\ t_{2y} & t_{2y} \\ t_{2y} & t_{2y} \\ t_{2y} & t_{2y} \\ t_{3y} & t_{3y} \\ t_{3y} & t_{2y} \\ t_{3y} & t_{3y} \\$$

• Ghosh and Mallik, Theory of Machines and Mechanisms

 $\mathbf{x}=\mathbf{A}^{-1}\mathbf{b} \Leftrightarrow \mathbf{L}\mathbf{U}\mathbf{x}=\mathbf{b}; \mathbf{L}\mathbf{y}=\mathbf{b}$ (Forward); $\mathbf{U}\mathbf{x}=\mathbf{y}$ (Backward)

<u>Disadv.</u>: Need to calculate even the reactions for inv. dyn.

Three-link Serial with f₀₃ as External

• Join first three links form

Proof of $\tau^{C} = J^{T} f_{n3}$

 The DeNOC matrices for 3-link serial manipulator **n**₂₃ . $\begin{bmatrix} \mathbf{t}_1 \\ \mathbf{t}_2 \\ \mathbf{t}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0}'s \\ \mathbf{B}_{21} & \mathbf{1} \\ \mathbf{B}_{31} & \mathbf{B}_{32} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 & \mathbf{0}'s \\ \mathbf{p}_2 \\ \mathbf{0}'s & \mathbf{p}_3 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{bmatrix}$ $\stackrel{\mathbf{n}_{03}}{\mathbf{r}_3} \mathbf{r}_3$ $\frac{\mathbf{n}_{03}}{\mathbf{r}_3} \mathbf{r}_3$ $\mathbf{N}_{l}^{T} \mathbf{w}^{C} = \begin{bmatrix} \mathbf{1} & \mathbf{B}_{21}^{T} & \mathbf{B}_{31}^{T} \\ & \mathbf{1} & \mathbf{B}_{32}^{T} \\ & \mathbf{0}'s & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{1}^{C} \\ \mathbf{w}_{2}^{C} \\ \mathbf{w}_{3}^{C} \end{bmatrix} = \begin{bmatrix} \mathbf{w}_{1}^{C} + \underbrace{\mathbf{B}_{21}^{T}(\mathbf{w}_{2}^{C} + \mathbf{B}_{32}^{T}\mathbf{w}_{3}^{C})} \\ \because \mathbf{B}_{32}\mathbf{B}_{21} = \mathbf{B}_{31} \Rightarrow \mathbf{B}_{21}^{T}\mathbf{B}_{32}^{T} = \mathbf{B}_{31}^{T} \\ & \underbrace{\mathbf{w}_{2}^{C} + \mathbf{B}_{32}^{T}\mathbf{w}_{3}^{C}} \\ & \underbrace{\mathbf{w}_{2}^{C} + \mathbf{B}_{32}^{T}\mathbf{w}_{3}^{C}} \\ & \underbrace{\mathbf{w}_{2}^{C} + \mathbf{B}_{32}^{T}\mathbf{w}_{3}^{C}} \\ & \underbrace{\mathbf{w}_{2}^{C} \\ & \mathbf{w}_{2}^{C} \end{bmatrix} = \begin{bmatrix} \mathbf{w}_{1}^{C} + \underbrace{\mathbf{W}_{2}^{C} + \mathbf{W}_{32}^{T}\mathbf{w}_{3}^{C}} \\ & \underbrace{\mathbf{W}_{2}^{C} + \mathbf{W}_{32}^{T}\mathbf{w}_{3}^{C}} \\ & \underbrace{\mathbf{W}_{2}^{C} + \mathbf{W}_{32}^{T}\mathbf{w}_{3}^{C}} \\ & \underbrace{\mathbf{W}_{2}^{C} \\ & \mathbf{W}_{2}^{C} \end{bmatrix} = \begin{bmatrix} \mathbf{W}_{1}^{C} + \underbrace{\mathbf{W}_{2}^{C} + \mathbf{W}_{32}^{T}\mathbf{w}_{3}^{C}} \\ & \underbrace{\mathbf{W}_{2}^{C} + \mathbf{W}_{32}^{T}\mathbf{w}_{3}^{C}} \\ & \underbrace{\mathbf{W}_{2}^{C} \\ & \mathbf{W}_{2}^{C} \end{bmatrix} \end{bmatrix}$ \mathbf{w}_3^C $\mathbf{B}_{32}^{T} = \begin{vmatrix} \mathbf{1} & (\mathbf{r}_{2} + \mathbf{d}_{3}) \times \mathbf{1} \\ \mathbf{0}'s & \mathbf{1} \end{vmatrix} \qquad \mathbf{w}_{3}^{C} = \begin{vmatrix} \mathbf{n}_{03} + \mathbf{n}_{23} - \mathbf{d}_{3} \times \mathbf{f}_{23} + \mathbf{r}_{3} \times \mathbf{f}_{03} \\ \mathbf{f}_{02} + \mathbf{f}_{22} \end{vmatrix}$

$$\tilde{\mathbf{w}}_{2}^{C} = \mathbf{w}_{2}^{C} + \mathbf{B}_{32}^{T} \mathbf{w}_{3}^{C} = \begin{bmatrix} \mathbf{n}_{32}^{\prime} + \mathbf{n}_{12} - \mathbf{d}_{2} \times \mathbf{f}_{12} + \mathbf{r}_{2} \times \mathbf{f}_{32}^{\prime} \\ \mathbf{f}_{32}^{\prime} + \mathbf{f}_{12}^{\prime} \\ \mathbf{f}_{32}^{\prime} + \mathbf{f}_{12}^{\prime} \end{bmatrix} + \begin{bmatrix} \mathbf{n}_{03} + \mathbf{p}_{23}^{\prime} - \mathbf{d}_{3} \times \mathbf{f}_{23}^{\prime} + \mathbf{r}_{3} \times \mathbf{f}_{03} + \mathbf{p}_{2}^{\prime} \\ \mathbf{f}_{03}^{\prime} + \mathbf{p}_{23}^{\prime} \end{bmatrix}$$

$$+ \begin{bmatrix} \mathbf{n}_{03} + \mathbf{n}_{12} + (\mathbf{r}_{2} + \mathbf{d}_{3} + \mathbf{r}_{3}) \times \mathbf{f}_{03} - \mathbf{d}_{2} \times \mathbf{f}_{12} \\ \mathbf{p}_{2}^{\prime} \\ \mathbf{f}_{03}^{\prime} + \mathbf{f}_{12}^{\prime} \end{bmatrix}$$

$$\tilde{\mathbf{w}}_{2}^{C} = \begin{bmatrix} \mathbf{n}_{03} + \mathbf{n}_{12} + (\mathbf{r}_{2} + \mathbf{d}_{3} + \mathbf{r}_{3}) \times \mathbf{f}_{03} - \mathbf{d}_{2} \times \mathbf{f}_{12} \\ \mathbf{p}_{2}^{\prime} \\ \mathbf{f}_{03}^{\prime} + \mathbf{f}_{12}^{\prime} \end{bmatrix}$$

$$\tilde{\mathbf{w}}_{1}^{C} = \begin{bmatrix} \mathbf{n}_{03} + \mathbf{n}_{01} + \mathbf{p}_{1} \times \mathbf{f}_{03} - \mathbf{d}_{1} \times \mathbf{f}_{01} \\ \mathbf{f}_{03}^{\prime} + \mathbf{f}_{01} \end{bmatrix}$$

Constraint Torque

Equations of Motion

$$\underbrace{\mathbf{I}\ddot{\boldsymbol{\Theta}} + \mathbf{C}\dot{\boldsymbol{\Theta}}}_{\boldsymbol{\tau}^*:known} = \begin{array}{c} \boldsymbol{\tau}^E + \boldsymbol{\tau}^C \\ [\boldsymbol{\tau}_1, 0, 0]^T & \mathbf{J}^T \mathbf{f}_{03} \end{array} \qquad \mathbf{J} = \begin{vmatrix} \mathbf{e}_1 \times \boldsymbol{\rho}_1 & \mathbf{e}_2 \times \boldsymbol{\rho}_2 & \mathbf{e}_3 \times \boldsymbol{\rho}_3 \\ \mathbf{e}_1 \times \mathbf{\rho}_1 & \mathbf{e}_2 \times \mathbf{\rho}_2 & \mathbf{e}_3 \times \boldsymbol{\rho}_3 \end{vmatrix}$$

<u>Adv.</u>: Reduced size of 3×3 (instead of 9×9) for inverse dynamics

Subsystem Recursive Method

<u>Adv.</u>: Subsystem recursion.; Maximum size: 2×2 (not 9×9 or 3×3); Can use existing serial-chain dyn. algo.

Intelligent Systems, Control and Automation: Science and Engineering

Suril Vijaykumar Shah Subir Kumar Saha Jayanta Kumar Dutt

Dynamics of Tree-Type Robotic Systems

International

2013

D Springer

Lecture 4

Recursive Robot Dynamics

Prof. S.K. Saha ME Dept., IIT Delhi

Int.: 2009 Indian: 2013

Rimenshu Diaadhary Saharikaman Saha

Springer

Summary of Previous Lecture

- Dynamics (classical way) of 4-bar mechanism using FBD
- Cut-open 3+0 constrained dynamics of 4-bar
- Cut-open 2+1 constrained dynamics of 4-bar
- Inverse dynamics using ReDySim

Forward Dynamics of 4-bar Mechanism

Constrained equations of motion:

System-level Lagrange Multiplier Method

Inverse Dynamics (w/o Gravity)

Inverse Dynamics (w/Gravity)

Two-DOF Parallel Manipulator

Kinematic constraints

$$\dot{\mathbf{I}}_1 + \dot{\mathbf{I}}_2 = \dot{\mathbf{a}}_0 = \mathbf{0}$$

Link		b _i		θ_i		a_i		α_i	
		<i>(m)</i>		<i>(m)</i>		(m)	<i>(m)</i>	
1		0		$ heta_l$		0		π/2	
2		<i>b</i> ₂ [JV]		0		0		0	
	Link	<i>m</i> _i	$r_{i,x,} r_{i,y}$		r _{i,z}		$I_{i,xx}, I_{i,yy}$		
		(kg)	(m)				(kg-m ²)		
	1.2	655	0		.625		399		

Sliding velocity (constant): 0.1 m/sec.

Two RP serial manipulators; Combined: 4 eqs., 4 (f_1 , f_2 , λ_x , λ_y)?

Three-DOF RRR Parallel Robot

Inverse Dynamics of 3-DOF RRR Robot

	3-RRR parallel manipulator					
Sub- system	Link #	Length (m)	Mass (kg)			
Ι	1	0.4	3			
	2, 4, 5	0.6	4			
	3	0.4*	8			
П	6	0.4	3			
III	7	0.4	3			
represents :	the side	of equilaters	al triangular link			

Inverse and Forward using ReDySim

Driving Torques (w/o gravity)

Driving Torques (w/gravity)

Six-DOF Parallel Robot: Stewart Platform

FBD of VII Subsystem

Inverse Dynamics Algorithm

<u>Ref</u>: Sadana, M., 2009, *Dynamic Analysis of 6-DOF Motion Platform*, M. Tech Project Report, IIT Delhi

More Robots using ReDySim

Legged Robots

Flexible Rope using ReDySim

Conclusions

- Purpose of Recursive Robot Dynamics
 - Efficiency
 - Numerical stability
- DeNOC matrices for serial-chain
- NE to EL derivations
- Constrained equations of motion for serial-chain systems
- Schemes for Inverse and Forward Dynamics (Simulation)
- RoboAnalyzer software for robot dynamics
- Parallel robot application
- Four-bar mechanism from FBD
- Cut-open system and subsystem recursion
- ReDySim software
- Five-bar, 3-DOF RRR, Stewart platform dynamics
- Custom-made GUI for Stewart platform
- Simulation of walking robots and rope using ReDySim

Acknowledgements

- Mr. Majid Koul
- Mr. Rajivlochana C.G.
- Dr. Suril V. Shah
- Mr. Mukesh Sadana
- Dr. Himanshu Chaudhary
- Students of IIT Delhi and other institutes who used the materials mentioned in the lectures and given feedbacks.
Thank you

For comments/questions:

saha@mech.iitd.ac.in http://web.iitd.ac.in/~saha